List GitHub Repositories
Use OpenAI, NextJS, and the Auth0-AI SDKs to list your GitHub repositores.
We value your feedback! To ask questions, report issues, or request new frameworks and providers, connect with us on GitHub.
language
Prerequisites
Before using this example, make sure you:
- Install Node.js 18+ and
npm
. - Set up an OpenAI API key.
- Complete the User authentication quickstart to create a Next.js app integrated with Auth0.
- Create and configure a GitHub App.
- Configure a Social Connection for GitHub in Auth0
- Make sure to enable
Token Vault
- Make sure to enable
Pick Your Tech Stack
1. Configure Auth0 AI
First, you must install the SDK:
npm install @auth0/ai-vercel
Then, you need to initialize Auth0 AI and set up the connection to request access tokens with the required GitHub scopes.
import { Auth0AI } from "@auth0/ai-vercel";
import { auth0 } from "@/lib/auth0";
const auth0AI = new Auth0AI();
export const withGitHub = auth0AI.withTokenForConnection({
connection: "github",
scopes: ["repo"],
refreshToken: async () => {
const session = await auth0.getSession();
const refreshToken = session?.tokenSet.refreshToken as string;
return refreshToken;
},
});
Here, the property auth0
is an instance of @auth0/nextjs-auth0
to handle the application auth flows.
You can check different authentication options for Next.js with Auth0 at the official documentation.
2. Integrate your tool with GitHub
Wrap your tool using the Auth0 AI SDK to obtain an access token for the GitHub API.
import { Octokit, RequestError } from "octokit";
import { getAccessTokenForConnection } from "@auth0/ai-vercel";
import { FederatedConnectionError } from "@auth0/ai/interrupts";
import { withGitHub } from "@/lib/auth0-ai";
import { tool } from "ai";
import { z } from "zod";
export const listRepositories = withGitHub(
tool({
description: "List respositories for the current user on GitHub",
parameters: z.object({}),
execute: async () => {
// Get the access token from Auth0 AI
const credentials = getAccessTokenForConnection();
// GitHub SDK
try {
const octokit = new Octokit({
auth: credentials?.accessToken,
});
const { data } = await octokit.rest.repos.listForAuthenticatedUser();
return data.map((repo) => repo.name);
} catch (error) {
console.log("Error", error);
if (error instanceof RequestError) {
if (error.status === 401) {
throw new FederatedConnectionError(
`Authorization required to access the Federated Connection`
);
}
}
throw error;
}
},
})
);
3. Handle authentication redirects
Interrupts are a way for the system to pause execution and prompt the user to take an action —such as authenticating or granting API access— before resuming the interaction. This ensures that any required access is granted dynamically and securely during the chat experience. In this context, Auth0-AI SDK manages authentication redirects in the Vercel AI SDK via these interrupts.
Server Side
On the server-side code of your Next.js App, you need to set up the tool invocation and handle the interruption messaging via the errorSerializer
. The setAIContext
function is used to set the async-context for the Auth0 AI SDK.
import { createDataStreamResponse, generateId, Message, streamText } from "ai";
import { openai } from "@ai-sdk/openai";
import { setAIContext } from "@auth0/ai-vercel";
import { errorSerializer, invokeTools } from "@auth0/ai-vercel/interrupts";
import { listRepositories } from "@/lib/tools/listRepositories";
export const maxDuration = 30;
export async function POST(request: Request) {
const { id, messages} = await request.json();
setAIContext({ threadID: id });
return createDataStreamResponse({
execute: async (dataStream) => {
await invokeTools({
messages,
tools: { listRepositories },
});
const result = streamText({
model: openai("gpt-4o-mini"),
system: "You are a friendly assistant! Keep your responses concise and helpful.",
messages,
maxSteps: 5,
tools: { listRepositories },
experimental_activeTools: ["listRepositories"],
experimental_generateMessageId: generateId,
});
result.mergeIntoDataStream(dataStream, {
sendReasoning: true,
});
},
onError: errorSerializer((err) => {
return "Oops, an error occured!";
}),
});
}
Client Side
On this example we utilize the EnsureAPIAccessPopup
component to show a popup that allows the user to authenticate with GitHub and grant access with the requested scopes. You'll first need to install the @auth0/ai-components
package:
npx @auth0/ai-components add FederatedConnections
Then, you can integrate the authentication popup in your chat component, using the interruptions helper from the SDK:
"use client";
import { generateId } from "ai";
import { useChat } from "@ai-sdk/react";
import { useInterruptions } from "@auth0/ai-vercel/react";
import { FederatedConnectionInterrupt } from "@auth0/ai/interrupts";
import { EnsureAPIAccessPopup } from "@/components/auth0-ai/FederatedConnections/popup";
export default function Chat() {
const { messages, handleSubmit, input, setInput, toolInterrupt } =
useInterruptions((handler) =>
useChat({
experimental_throttle: 100,
sendExtraMessageFields: true,
generateId,
onError: handler((error) => console.error("Chat error:", error)),
})
);
return (
<div>
{messages.map((message) => (
<div key={message.id}>
{message.role === "user" ? "User: " : "AI: "}
{message.content}
{message.parts && message.parts.length > 0 && (
<div>
{message.parts
.filter((p) => p.type === "tool-invocation")
.map((part) => {
const { toolInvocation: { toolCallId, state } } = part;
if (state === "call" && FederatedConnectionInterrupt.isInterrupt(toolInterrupt)) {
return (
<EnsureAPIAccessPopup
key={toolCallId}
onFinish={toolInterrupt.resume}
connection={toolInterrupt.connection}
scopes={toolInterrupt.requiredScopes}
connectWidget={{
title: "List GitHub respositories",
description:"description ...",
action: { label: "Check" },
}}
/>
);
}
})}
</div>
)}
</div>
))}
<form onSubmit={handleSubmit}>
<input value={input} placeholder="Say something..." onChange={(e) => setInput(e.target.value)} />
</form>
</div>
);
}
1. Configure Auth0 AI
First, you must install the SDK:
npm install @auth0/ai-langchain
Then, you need to initialize Auth0 AI and set up the connection to request access tokens with the required GitHub scopes.
import { Auth0AI } from "@auth0/ai-langchain";
const auth0AI = new Auth0AI();
export const withGitHub = auth0AI.withTokenForConnection({
connection: "github",
scopes: ["repo"],
// Optional: By default, the SDK will expect the refresh token from
// the LangChain RunnableConfig (`config.configurable._credentials.refreshToken`)
// If you want to use a different store for refresh token you can set up a getter here
// refreshToken: async () => await getRefreshToken(),
});
2. Integrate your tool with GitHub
Wrap your tool using the Auth0 AI SDK to obtain an access token for the GitHub API.
import { Octokit } from "@octokit/rest";
import { RequestError } from "@octokit/request-error";
import { getAccessTokenForConnection } from "@auth0/ai-langchain";
import { FederatedConnectionError } from "@auth0/ai/interrupts";
import { withGitHub } from "@/lib/auth0-ai";
import { tool } from "@langchain/core/tools";
import { z } from "zod";
export const listRepositories = withGitHub(
tool(async () => {
// Get the access token from Auth0 AI
const credentials = getAccessTokenForConnection();
// GitHub SDK
try {
const octokit = new Octokit({
auth: credentials?.accessToken,
});
const { data } = await octokit.rest.repos.listForAuthenticatedUser();
return data.map((repo) => repo.name);
} catch (error) {
console.log("Error", error);
if (error instanceof RequestError) {
if (error.status === 401) {
throw new FederatedConnectionError(
`Authorization required to access the Federated Connection`
);
}
}
throw error;
}
},
{
name: "list_github_repositories",
description: "List respositories for the current user on GitHub",
schema: z.object({}),
})
);
Now that the tool is protected, you can pass it your LangGraph agent as part of a ToolNode
. The agent will automatically request the access token when the tool is called.
import { AIMessage } from "@langchain/core/messages";
import { RunnableLike } from "@langchain/core/runnables";
import { END, InMemoryStore, MemorySaver, MessagesAnnotation, START, StateGraph } from "@langchain/langgraph";
import { ToolNode } from "@langchain/langgraph/prebuilt";
import { ChatOpenAI } from "@langchain/openai";
import { listRepositories } from "@/lib/tools/listRepositories";
const model = new ChatOpenAI({ model: "gpt-4o", }).bindTools([
listRepositories,
]);
const callLLM = async (state: typeof MessagesAnnotation.State) => {
const response = await model.invoke(state.messages);
return { messages: [response] };
};
const routeAfterLLM: RunnableLike = function (state) {
const lastMessage = state.messages[state.messages.length - 1] as AIMessage;
if (!lastMessage.tool_calls?.length) {
return END;
}
return "tools";
};
const stateGraph = new StateGraph(MessagesAnnotation)
.addNode("callLLM", callLLM)
.addNode(
"tools",
new ToolNode(
[
// A tool with federated connection access
listRepositories,
// ... other tools
],
{
// Error handler should be disabled in order to
// trigger interruptions from within tools.
handleToolErrors: false,
}
)
)
.addEdge(START, "callLLM")
.addConditionalEdges("callLLM", routeAfterLLM, [END, "tools"])
.addEdge("tools", "callLLM");
const checkpointer = new MemorySaver();
const store = new InMemoryStore();
export const graph = stateGraph.compile({
checkpointer,
store,
});
3. Handle authentication redirects
Interrupts are a way for the system to pause execution and prompt the user to take an action —such as authenticating or granting API access— before resuming the interaction. This ensures that any required access is granted dynamically and securely during the chat experience. In this context, Auth0-AI SDK manages such authentication redirects integrated with the Langchain SDK.
Server Side
On the server side of your Next.js application you need to set up a route to handle the Chat API requests. This route will be responsible for forwarding the requests to the LangGraph API. Additionally, you must provide the refreshToken
to the Langchain's RunnableConfig from the authenticated user's session.
import { initApiPassthrough } from "langgraph-nextjs-api-passthrough";
import { auth0 } from "@/lib/auth0";
const getRefreshToken = async () => {
const session = await auth0.getSession();
const refreshToken = session?.tokenSet.refreshToken as string;
return refreshToken;
};
export const { GET, POST, PUT, PATCH, DELETE, OPTIONS, runtime } =
initApiPassthrough({
apiUrl: process.env.LANGGRAPH_API_URL,
apiKey: process.env.LANGSMITH_API_KEY,
runtime: "edge",
baseRoute: "langgraph/",
bodyParameters: async (req, body) => {
if (
req.nextUrl.pathname.endsWith("/runs/stream") &&
req.method === "POST"
) {
return {
...body,
config: {
configurable: {
_credentials: {
refreshToken: await getRefreshToken(),
},
},
},
};
}
return body;
},
});
Here, the property auth0
is an instance of @auth0/nextjs-auth0
to handle the application auth flows.
You can check different authentication options for Next.js with Auth0 at the official documentation.
Client Side
On this example we utilize the EnsureAPIAccessPopup
component to show a popup that allows the user to authenticate with GitHub and grant access with the requested scopes. You'll first need to install the @auth0/ai-components
package:
npx @auth0/ai-components add FederatedConnections
Then, you can integrate the authentication popup in your chat component, using the interruptions helper from the SDK:
import { useStream } from "@langchain/langgraph-sdk/react";
import { FederatedConnectionInterrupt } from "@auth0/ai/interrupts";
import { EnsureAPIAccessPopup } from "@/components/auth0-ai/FederatedConnections/popup";
const useFocus = () => {
const htmlElRef = useRef<HTMLInputElement>(null);
const setFocus = () => {
if (!htmlElRef.current) {
return;
}
htmlElRef.current.focus();
};
return [htmlElRef, setFocus] as const;
};
export default function Chat() {
const [threadId, setThreadId] = useQueryState("threadId");
const [input, setInput] = useState("");
const thread = useStream({
apiUrl: `${process.env.NEXT_PUBLIC_URL}/api/langgraph`,
assistantId: "agent",
threadId,
onThreadId: setThreadId,
onError: (err) => {
console.dir(err);
},
});
const [inputRef, setInputFocus] = useFocus();
useEffect(() => {
if (thread.isLoading) {
return;
}
setInputFocus();
}, [thread.isLoading, setInputFocus]);
const handleSubmit: FormEventHandler<HTMLFormElement> = async (e) => {
e.preventDefault();
thread.submit(
{ messages: [{ type: "human", content: input }] },
{
optimisticValues: (prev) => ({
messages: [
...((prev?.messages as []) ?? []),
{ type: "human", content: input, id: "temp" },
],
}),
}
);
setInput("");
};
return (
<div>
{thread.messages.filter((m) => m.content && ["human", "ai"].includes(m.type)).map((message) => (
<div key={message.id}>
{message.type === "human" ? "User: " : "AI: "}
{message.content as string}
</div>
))}
{thread.interrupt && FederatedConnectionInterrupt.isInterrupt(thread.interrupt.value) ? (
<div key={thread.interrupt.ns?.join("")}>
<EnsureAPIAccessPopup
key={thread.interrupt.ns?.join("")}
onFinish={() => thread.submit(null)}
connection={thread.interrupt.value.connection}
scopes={thread.interrupt.value.requiredScopes}
connectWidget={{
title: "List GitHub respositories",
description:"description ...",
action: { label: "Check" },
}}
/>
</div>
) : null}
<form onSubmit={handleSubmit}>
<input ref={inputRef} value={input} placeholder="Say something..." readOnly={thread.isLoading} disabled={thread.isLoading} onChange={(e) => setInput(e.target.value)} />
</form>
</div>
);
}
1. Configure Auth0 AI
First, you must install the SDK:
npm install @auth0/ai-genkit
Then, you need to initialize Auth0 AI and set up the connection to request access tokens with the required GitHub scopes.
import { Auth0AI } from "@auth0/ai-genkit";
import { auth0 } from "@/lib/auth0";
// importing GenKit instance
import { ai } from "./genkit";
const auth0AI = new Auth0AI({
genkit: ai,
});
export const withGitHub = auth0AI.withTokenForConnection({
connection: "github",
scopes: ["repo"],
refreshToken: async () => {
const session = await auth0.getSession();
const refreshToken = session?.tokenSet.refreshToken as string;
return refreshToken;
},
});
Here, the property auth0
is an instance of @auth0/nextjs-auth0
to handle the application auth flows.
You can check different authentication options for Next.js with Auth0 at the official documentation.
2. Integrate your tool with GitHub
Wrap your tool using the Auth0 AI SDK to obtain an access token for the GitHub API.
import { Octokit, RequestError } from "octokit";
import { z } from "zod";
import { getAccessTokenForConnection } from "@auth0/ai-genkit";
import { FederatedConnectionError } from "@auth0/ai/interrupts";
import { withGoogleCalendar } from "@/lib/auth0-ai";
// importing GenKit instance
import { ai } from "../genkit";
export const listRepositories = ai.defineTool(
...withGitHub(
{
description: "List respositories for the current user on GitHub",
inputSchema: z.object({}),
name: "listRepositories",
},
async () => {
// Get the access token from Auth0 AI
const credentials = getAccessTokenForConnection();
try {
// GitHub SDK
const octokit = new Octokit({
auth: credentials?.accessToken,
});
const { data } = await octokit.rest.repos.listForAuthenticatedUser();
return data.map((repo) => repo.name);
} catch (error) {
if (error instanceof RequestError) {
if (error.status === 401) {
throw new FederatedConnectionError(
`Authorization required to access the Federated Connection`
);
}
}
throw error;
}
}
)
);
3. Handle authentication redirects
Interrupts are a way for the system to pause execution and prompt the user to take an action—such as authenticating or granting API access—before resuming the interaction. This ensures that any required access is granted dynamically and securely during the chat experience. In this context, Auth0-AI SDK manages authentication redirects in the GenKit SDK via these interrupts.
Server Side
On the server-side code of your Next.js App, you need to set up the tool invocation and handle the interruption messaging via the errorSerializer
. The setAIContext
function is used to set the async-context for the Auth0 AI SDK.
import { ToolRequestPart } from "genkit";
import path from "path";
import { ai } from "@/lib/genkit";
import { listRepositories } from "@/lib/tools/list-repositories";
import { resumeAuth0Interrupts } from "@auth0/ai-genkit";
import { auth0 } from "@/lib/auth0";
export async function POST(
request: Request,
{ params }: { params: Promise<{ id: string }> }
) {
const auth0Session = await auth0.getSession();
const { id } = await params;
const {
message,
interruptedToolRequest,
timezone,
}: {
message?: string;
interruptedToolRequest?: ToolRequestPart;
timezone: { region: string; offset: number };
} = await request.json();
let session = await ai.loadSession(id);
if (!session) {
session = ai.createSession({
sessionId: id,
});
}
const tools = [listRepositories];
const chat = session.chat({
tools: tools,
system: `You are a helpful assistant.
The user's timezone is ${timezone.region} with an offset of ${timezone.offset} minutes.
User's details: ${JSON.stringify(auth0Session?.user, null, 2)}.
You can use the tools provided to help the user.
You can also ask the user for more information if needed.
Chat started at ${new Date().toISOString()}
`,
});
const r = await chat.send({
prompt: message,
resume: resumeAuth0Interrupts(tools, interruptedToolRequest),
});
return Response.json({ messages: r.messages, interrupts: r.interrupts });
}
export async function GET(
request: Request,
{ params }: { params: Promise<{ id: string }> }
) {
const { id } = await params;
const session = await ai.loadSession(id);
if (!session) {
return new Response("Session not found", {
status: 404,
});
}
const json = session.toJSON();
if (!json?.threads?.main) {
return new Response("Session not found", {
status: 404,
});
}
return Response.json(json.threads.main);
}
Client Side
On this example we utilize the EnsureAPIAccessPopup
component to show a popup that allows the user to authenticate with Google Calendar and grant access with the requested scopes. You'll first need to install the @auth0/ai-components
package:
npx @auth0/ai-components add FederatedConnections
Then, you can integrate the authentication popup in your chat component, using the interruptions helper from the SDK:
"use client";
import { useQueryState } from "nuqs";
import { FormEventHandler, useEffect, useRef, useState } from "react";
import { FederatedConnectionInterrupt } from "@auth0/ai/interrupts";
import { EnsureAPIAccessPopup } from "@/components/auth0-ai/FederatedConnections/popup";
import Markdown from "react-markdown";
const useFocus = () => {
const htmlElRef = useRef<HTMLInputElement>(null);
const setFocus = () => {
if (!htmlElRef.current) {
return;
}
htmlElRef.current.focus();
};
return [htmlElRef, setFocus] as const;
};
export default function Chat() {
const [threadId, setThreadId] = useQueryState("threadId");
const [input, setInput] = useState("");
const [isLoading, setIsLoading] = useState(false);
const [messages, setMessages] = useState<
{
role: "user" | "model";
content: [{ text?: string; metadata?: { interrupt?: any } }];
}[]
>([]);
useEffect(() => {
if (!threadId) {
setThreadId(self.crypto.randomUUID());
}
}, [threadId, setThreadId]);
useEffect(() => {
if (!threadId) {
return;
}
setIsLoading(true);
(async () => {
const messagesResponse = await fetch(`/api/chat/${threadId}`, {
method: "GET",
credentials: "include",
});
if (!messagesResponse.ok) {
setMessages([]);
} else {
setMessages(await messagesResponse.json());
}
setIsLoading(false);
})();
}, [threadId]);
const [inputRef, setInputFocus] = useFocus();
useEffect(() => {
if (isLoading) {
return;
}
setInputFocus();
}, [isLoading, setInputFocus]);
const submit = async ({
message,
interruptedToolRequest,
}: {
message?: string;
interruptedToolRequest?: any;
}) => {
setIsLoading(true);
const timezone = {
region: Intl.DateTimeFormat().resolvedOptions().timeZone,
offset: new Date().getTimezoneOffset(),
};
const response = await fetch(`/api/chat/${threadId}`, {
method: "POST",
credentials: "include",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({ message, interruptedToolRequest, timezone }),
});
if (!response.ok) {
console.error("Error sending message");
} else {
const { messages: messagesResponse } = await response.json();
setMessages(messagesResponse);
}
setIsLoading(false);
};
// //When the user submits a message, add it to the list of messages and resume the conversation.
const handleSubmit: FormEventHandler<HTMLFormElement> = async (e) => {
e.preventDefault();
setMessages((messages) => [
...messages,
{ role: "user", content: [{ text: input }] },
]);
submit({ message: input });
setInput("");
};
return (
<div>
{messages
.filter(
(m) =>
["model", "user", "tool"].includes(m.role) &&
m.content?.length > 0 &&
(m.content[0].text || m.content[0].metadata?.interrupt)
)
.map((message, index) => (
<div key={index}>
<Markdown>
{(message.role === "user" ? "User: " : "AI: ") +
(message.content[0].text || "")}
</Markdown>
{!isLoading &&
message.content[0].metadata?.interrupt &&
FederatedConnectionInterrupt.isInterrupt(
message.content[0].metadata?.interrupt
)
? (() => {
const interrupt: any = message.content[0].metadata?.interrupt;
return (
<div>
<EnsureAPIAccessPopup
onFinish={() =>
submit({ interruptedToolRequest: message.content[0] })
}
connection={interrupt.connection}
scopes={interrupt.requiredScopes}
connectWidget={{
title: `Requested by: "${interrupt.toolCall.toolName}"`,
description: "Description...",
action: { label: "Check" },
}}
/>
</div>
);
})()
: null}
</div>
))}
<form onSubmit={handleSubmit}>
<input value={input} ref={inputRef} placeholder="Say something..." readOnly={isLoading} disabled={isLoading} onChange={(e) => setInput(e.target.value)} />
</form>
</div>
);
}
1. Configure Auth0 AI
First, you must install the SDK:
npm install @auth0/ai-llamaindex
Then, you need to initialize Auth0 AI and set up the connection to request access tokens with the required GitHub scopes.
import { Auth0AI } from "@auth0/ai-llamaindex";
import { auth0 } from "@/lib/auth0";
const auth0AI = new Auth0AI();
export const withGitHub = auth0AI.withTokenForConnection({
connection: "github",
scopes: ["repo"],
refreshToken: async () => {
const session = await auth0.getSession();
const refreshToken = session?.tokenSet.refreshToken as string;
return refreshToken;
},
});
Here, the property auth0
is an instance of @auth0/nextjs-auth0
to handle the application auth flows.
You can check different authentication options for Next.js with Auth0 at the official documentation.
2. Integrate your tool with GitHub
Wrap your tool using the Auth0 AI SDK to obtain an access token for the GitHub API.
import { Octokit, RequestError } from "octokit";
import { z } from "zod";
import { withGitHub } from "@/lib/auth0-ai";
import { getAccessTokenForConnection } from "@auth0/ai-vercel";
import { FederatedConnectionError } from "@auth0/ai/interrupts";
import { tool } from "llamaindex";
export const listRepositories = () =>
withGitHub(
tool(
async () => {
// Get the access token from Auth0 AI
const credentials = getAccessTokenForConnection();
// GitHub SDK
try {
const octokit = new Octokit({
auth: credentials?.accessToken,
});
const { data } = await octokit.rest.repos.listForAuthenticatedUser();
return data.map((repo) => repo.name);
} catch (error) {
if (error instanceof RequestError) {
if (error.status === 401) {
throw new FederatedConnectionError(
`Authorization required to access the Federated Connection`
);
}
}
throw error;
}
},
{
name: "listRepositories",
description: "List respositories for the current user on GitHub",
parameters: z.object({}),
}
)
);
3. Handle authentication redirects
Interrupts are a way for the system to pause execution and prompt the user to take an action —such as authenticating or granting API access— before resuming the interaction. This ensures that any required access is granted dynamically and securely during the chat experience. In this context, Auth0-AI SDK manages authentication redirects in the LlamaIndex SDK via these interrupts.
Server Side
On the server-side code of your Next.js App, you need to set up the tool invocation and handle the interruption messaging via the errorSerializer
. The setAIContext
function is used to set the async-context for the Auth0 AI SDK.
import { createDataStreamResponse, LlamaIndexAdapter, Message, ToolExecutionError } from "ai";
import { listRepositories } from "@/lib/tools/";
import { setAIContext } from "@auth0/ai-llamaindex";
import { withInterruptions } from "@auth0/ai-llamaindex/interrupts";
import { errorSerializer } from "@auth0/ai-vercel/interrupts";
import { OpenAIAgent } from "llamaindex";
export async function POST(request: Request) {
const { id, messages }: { id: string; messages: Message[] } =
await request.json();
setAIContext({ threadID: id });
return createDataStreamResponse({
execute: withInterruptions(
async (dataStream) => {
const agent = new OpenAIAgent({
systemPrompt: "You are an AI assistant",
tools: [listRepositories()],
verbose: true,
});
const stream = await agent.chat({
message: messages[messages.length - 1].content,
stream: true,
});
LlamaIndexAdapter.mergeIntoDataStream(stream as any, { dataStream });
},
{
messages,
errorType: ToolExecutionError,
}
),
onError: errorSerializer((err) => {
console.log(err);
return "Oops, an error occured!";
}),
});
}
Client Side
On this example we utilize the EnsureAPIAccessPopup
component to show a popup that allows the user to authenticate with GitHub and grant access with the requested scopes. You'll first need to install the @auth0/ai-components
package:
npx @auth0/ai-components add FederatedConnections
Then, you can integrate the authentication popup in your chat component, using the interruptions helper from the SDK:
"use client";
import { generateId } from "ai";
import { EnsureAPIAccessPopup } from "@/components/auth0-ai/FederatedConnections/popup";
import { useInterruptions } from "@auth0/ai-vercel/react";
import { FederatedConnectionInterrupt } from "@auth0/ai/interrupts";
import { useChat } from "@ai-sdk/react";
export default function Chat() {
const { messages, handleSubmit, input, setInput, toolInterrupt } =
useInterruptions((handler) =>
useChat({
experimental_throttle: 100,
sendExtraMessageFields: true,
generateId,
onError: handler((error) => console.error("Chat error:", error)),
})
);
return (
<div>
{messages.map((message) => (
<div key={message.id}>
{message.role === "user" ? "User: " : "AI: "}
{message.content}
{message.parts && message.parts.length > 0 && (
<div>
{toolInterrupt?.toolCall.id.includes(message.id) &&
FederatedConnectionInterrupt.isInterrupt(toolInterrupt) && (
<EnsureAPIAccessPopup
key={toolInterrupt.toolCall.id}
onFinish={toolInterrupt.resume}
connection={toolInterrupt.connection}
scopes={toolInterrupt.requiredScopes}
connectWidget={{
title: `Requested by: "${toolInterrupt.toolCall.name}"`,
description: "Description...",
action: { label: "Check" },
}}
/>
)}
</div>
)}
</div>
))}
<form onSubmit={handleSubmit}>
<input value={input} placeholder="Say something..." onChange={(e) => setInput(e.target.value)} autoFocus />
</form>
</div>
);
}
1. Before you start
- Ensure that the GitHub connection in Auth0 (
github
) has the following scopes configured:repo
read:user
2. Integrate your tool with Github
import { tool } from "ai";
import { z } from 'zod';
import { openai } from "@ai-sdk/openai";
import { Octokit } from "@octokit/rest";
import { auth0 } from "@/lib/auth0";
export const listRepos = tool({
description: 'List respositories for the current user on GitHub',
parameters: z.object({}),
execute: async () => {
const { token } = await auth0.getAccessTokenForConnection({ connection: "github" });
const octokit = new Octokit({ auth: token});
const response = await octokit.request('GET /user/repos', {
visibility: 'all',
});
const filteredRepos = response.data.map(repo => ({
id: repo.id,
full_name: repo.full_name,
private: repo.private,
owner_name: repo.owner.login,
url: repo.html_url,
description: repo.description,
stars: repo.stargazers_count,
forks: repo.forks_count,
}));
return filteredRepos;
}
});
Here, the property auth0
is an instance of @auth0/nextjs-auth0
to handle the application auth flows.
You can check different authentication options for Next.js with Auth0 at the official documentation.
3. Set up the API route for the chat
Create an AI tool that fetches GitHub repositories for the authenticated user using Auth0 to get a GitHub access token:
import { z } from 'zod';
import { streamText, tool } from "ai"
import { openai } from "@ai-sdk/openai"
const { Octokit } = require("@octokit/rest");
import { listRepos } from "@/lib/tools/listRepos";
export const maxDuration = 60;
export async function POST(req) {
const { messages } = await req.json()
const response = streamText({
model: openai('gpt-4o'),
messages,
system: "You're a helpful AI agent that fetches GitHub repositories",
tools: { listRepos }
})
return response.toDataStreamResponse();
}
4. Call from the client side
'use client';
import { useChat } from '@ai-sdk/react';
export default function Chat() {
const { messages, input, handleInputChange, handleSubmit } = useChat();
return (
<div className="flex flex-col w-full max-w-3xl py-24 mx-auto stretch text-gray-100">
{messages.map(message => (
<div key={message.id} className="whitespace-pre-wrap">
{message.role === 'user' ? 'User: ' : 'AI: '}
{message.parts.map((part, i) => {
switch (part.type) {
case 'text':
return <div key={`${message.id}-${i}`}>{part.text}</div>;
}
})}
</div>
))}
<form onSubmit={handleSubmit}>
<input onChange={handleInputChange} value={input} placeholder="Say something..." className="fixed bottom-0 w-full max-w-3xl p-2 mb-8 border border-zinc-300 rounded shadow-xl text-black" />
</form>
</div>
);
}
Navigate to https://localhost:3000
to see the chat UI show an array of returned GitHub repos for the user.
Prerequisites
Before using this example, make sure you:
- Install Python 3.11+ and
pip
. - Set up an OpenAI API key.
- Configure a Social Connection for GitHub in Auth0
- Make sure to enable
Token Vault
- Make sure to enable
Pick Your Tech Stack
1. Configure Auth0 AI
First, you must install the SDK:
pip install auth0-ai-langchain
Then, you need to initialize Auth0 AI and set up the connection to request access tokens with the required GitHub scopes.
from auth0_ai_langchain.auth0_ai import Auth0AI
auth0_ai = Auth0AI()
with_github = auth0_ai.with_federated_connection(
connection="github",
scopes=["repo"]
# Optional: By default, the SDK will expect the refresh token from
# the LangChain RunnableConfig (`config.configurable._credentials.refresh_token`)
# If you want to use a different store for refresh token you can set up a getter here
# refresh_token=lambda *_args, **_kwargs:session["user"]["refresh_token"],
)
2. Integrate your tool with GitHub
Wrap your tool using the Auth0 AI SDK to obtain an access token for the GitHub API.
from github import Github
from github.GithubException import BadCredentialsException
from pydantic import BaseModel
from langchain_core.tools import StructuredTool
from auth0_ai_langchain.federated_connections import get_access_token_for_connection, FederatedConnectionError
from src.lib.auth0_ai import with_github
class EmptySchema(BaseModel):
pass
def list_repositories_tool_function(date: datetime):
# Get the access token from Auth0 AI
access_token = get_access_token_for_connection()
# GitHub SDK
try:
g = Github(access_token)
user = g.get_user()
repos = user.get_repos()
repo_names = [repo.name for repo in repos]
return repo_names
except BadCredentialsException:
raise FederatedConnectionError("Authorization required to access the Federated Connection API")
list_github_repositories_tool = with_github(StructuredTool(
name="list_github_repositories",
description="List respositories for the current user on GitHub",
args_schema=EmptySchema,
func=list_repositories_tool_function,
))
Now that the tool is protected, you can pass it your LangGraph agent as part of a ToolNode
. The agent will automatically request the access token when the tool is called.
from typing import Annotated, Sequence, TypedDict
from langchain.storage import InMemoryStore
from langchain_core.messages import AIMessage, BaseMessage
from langchain_openai import ChatOpenAI
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import END, START, StateGraph, add_messages
from langgraph.prebuilt import ToolNode
from tools.list_repositories import list_github_repositories_tool
class State(TypedDict):
messages: Annotated[Sequence[BaseMessage], add_messages]
llm = ChatOpenAI(model="gpt-4o")
llm.bind_tools([list_github_repositories_tool])
async def call_llm(state: State):
response = await llm.ainvoke(state["messages"])
return {"messages": [response]}
def route_after_llm(state: State):
messages = state["messages"]
last_message = messages[-1] if messages else None
if isinstance(last_message, AIMessage) and last_message.tool_calls:
return "tools"
return END
workflow = (
StateGraph(State)
.add_node("call_llm", call_llm)
.add_node(
"tools",
ToolNode(
[
# a tool with federated connection access
list_github_repositories_tool,
# ... other tools
],
# The error handler should be disabled to
# allow interruptions to be triggered from within tools.
handle_tool_errors=False
)
)
.add_edge(START, "call_llm")
.add_edge("tools", "call_llm")
.add_conditional_edges("call_llm", route_after_llm, [END, "tools"])
)
graph = workflow.compile(checkpointer=MemorySaver(), store=InMemoryStore())
3. Handle authentication redirects
Interrupts are a way for the system to pause execution and prompt the user to take an action —such as authenticating or granting API access— before resuming the interaction. This ensures that any required access is granted dynamically and securely during the chat experience. In this context, Auth0-AI SDK manages such authentication redirects integrated with the Langchain SDK.
Server Side
On the server side of your Next.js application you need to set up a route to handle the Chat API requests. This route will be responsible for forwarding the requests to the LangGraph API. Additionally, you must provide the refreshToken
to the Langchain's RunnableConfig from the authenticated user's session.
import { initApiPassthrough } from "langgraph-nextjs-api-passthrough";
import { auth0 } from "@/lib/auth0";
const getRefreshToken = async () => {
const session = await auth0.getSession();
const refreshToken = session?.tokenSet.refreshToken as string;
return refreshToken;
};
export const { GET, POST, PUT, PATCH, DELETE, OPTIONS, runtime } =
initApiPassthrough({
apiUrl: process.env.LANGGRAPH_API_URL,
apiKey: process.env.LANGSMITH_API_KEY,
runtime: "edge",
baseRoute: "langgraph/",
bodyParameters: async (req, body) => {
if (
req.nextUrl.pathname.endsWith("/runs/stream") &&
req.method === "POST"
) {
return {
...body,
config: {
configurable: {
_credentials: {
refreshToken: await getRefreshToken(),
},
},
},
};
}
return body;
},
});
Here, the property auth0
is an instance of @auth0/nextjs-auth0
to handle the application auth flows.
You can check different authentication options for Next.js with Auth0 at the official documentation.
Client Side
On this example we utilize the EnsureAPIAccessPopup
component to show a popup that allows the user to authenticate with GitHub and grant access with the requested scopes. You'll first need to install the @auth0/ai-components
package:
npx @auth0/ai-components add FederatedConnections
Then, you can integrate the authentication popup in your chat component, using the interruptions helper from the SDK:
import { useStream } from "@langchain/langgraph-sdk/react";
import { FederatedConnectionInterrupt } from "@auth0/ai/interrupts";
import { EnsureAPIAccessPopup } from "@/components/auth0-ai/FederatedConnections/popup";
const useFocus = () => {
const htmlElRef = useRef<HTMLInputElement>(null);
const setFocus = () => {
if (!htmlElRef.current) {
return;
}
htmlElRef.current.focus();
};
return [htmlElRef, setFocus] as const;
};
export default function Chat() {
const [threadId, setThreadId] = useQueryState("threadId");
const [input, setInput] = useState("");
const thread = useStream({
apiUrl: `${process.env.NEXT_PUBLIC_URL}/api/langgraph`,
assistantId: "agent",
threadId,
onThreadId: setThreadId,
onError: (err) => {
console.dir(err);
},
});
const [inputRef, setInputFocus] = useFocus();
useEffect(() => {
if (thread.isLoading) {
return;
}
setInputFocus();
}, [thread.isLoading, setInputFocus]);
const handleSubmit: FormEventHandler<HTMLFormElement> = async (e) => {
e.preventDefault();
thread.submit(
{ messages: [{ type: "human", content: input }] },
{
optimisticValues: (prev) => ({
messages: [
...((prev?.messages as []) ?? []),
{ type: "human", content: input, id: "temp" },
],
}),
}
);
setInput("");
};
return (
<div>
{thread.messages.filter((m) => m.content && ["human", "ai"].includes(m.type)).map((message) => (
<div key={message.id}>
{message.type === "human" ? "User: " : "AI: "}
{message.content as string}
</div>
))}
{thread.interrupt && FederatedConnectionInterrupt.isInterrupt(thread.interrupt.value) ? (
<div key={thread.interrupt.ns?.join("")}>
<EnsureAPIAccessPopup
key={thread.interrupt.ns?.join("")}
onFinish={() => thread.submit(null)}
connection={thread.interrupt.value.connection}
scopes={thread.interrupt.value.requiredScopes}
connectWidget={{
title: "List GitHub respositories",
description:"description ...",
action: { label: "Check" },
}}
/>
</div>
) : null}
<form onSubmit={handleSubmit}>
<input ref={inputRef} value={input} placeholder="Say something..." readOnly={thread.isLoading} disabled={thread.isLoading} onChange={(e) => setInput(e.target.value)} />
</form>
</div>
);
}
1. Configure Auth0 AI
First, you must install the SDK:
pip install auth0-ai-llamaindex
Then, you need to initialize Auth0 AI and set up the connection to request access tokens with the required GitHub scopes.
from auth0_ai_llamaindex.auth0_ai import Auth0AI
from flask import session
auth0_ai = Auth0AI()
with_github = auth0_ai.with_federated_connection(
connection="github",
scopes=["repo"],
refresh_token=lambda *_args, **_kwargs:session["user"]["refresh_token"],
)
Here, the session is controlled by a Flask application instance. You may utilize any other framework or session store of your preference.
2. Integrate your tool with GitHub
Wrap your tool using the Auth0 AI SDK to obtain an access token for the GitHub API.
from github import Github
from github.GithubException import BadCredentialsException
from llama_index.core.tools import FunctionTool
from auth0_ai_llamaindex.federated_connections import get_access_token_for_connection, FederatedConnectionError
from src.lib.auth0_ai import with_github
def list_github_repositories_tool_function():
# Get the access token from Auth0 AI
access_token = get_access_token_for_connection()
# GitHub SDK
try:
g = Github(access_token)
user = g.get_user()
repos = user.get_repos()
repo_names = [repo.name for repo in repos]
return repo_names
except BadCredentialsException:
raise FederatedConnectionError("Authorization required to access the Federated Connection
list_github_repositories_tool = with_github(FunctionTool.from_defaults(
name="list_github_repositories",
description="List respositories for the current user on GitHub",
fn=list_github_repositories_tool_function,
))
Now that the tool is protected, you can pass it your LlamaIndex agent.
from datetime import datetime
from llama_index.agent.openai import OpenAIAgent
from src.lib.tools.list_repositories import list_github_repositories_tool
system_prompt = f"""You are an assistant designed to answer random user's questions.
**Additional Guidelines**:
- Today’s date for reference: {datetime.now().isoformat()}
"""
agent = OpenAIAgent.from_tools(
tools=[
# a tool with federated connection access
list_github_repositories_tool
# ... other tools
],
model="gpt-4o",
system_prompt=system_prompt
verbose=True,
)
3. Handle authentication redirects
Interrupts are a way for the system to pause execution and prompt the user to take an action —such as authenticating or granting API access— before resuming the interaction. This ensures that any required access is granted dynamically and securely during the chat experience. In this context, Auth0-AI SDK manages such authentication redirects integrated with the LLamaIndex SDK.
Server side
On the server side of your Flask application you will need to set up a route to handle the Chat API requests. This route will be responsible for forwarding the requests to the OpenAI API utilizing LlamaIndex's SDK, that has been initialized with Auth0 AI's protection enhancements for tools.
When FederatedConnectionInterrupt
error ocurrs, the server side will signal the front-end about the level access restrictions, and the front-end should prompt the user to trigger a new authorization (or login) request with the necessary permissions.
from dotenv import load_dotenv
from flask import Flask, request, jsonify, session
from auth0_ai_llamaindex.auth0_ai import Auth0AI
from auth0_ai_llamaindex.federated_connections import FederatedConnectionInterrupt
from src.lib.agent import agent
load_dotenv()
app = Flask(__name__)
@app.route("/chat", methods=["POST"])
async def chat():
if "user" not in session:
return jsonify({"error": "unauthorized"}), 401
try:
message = request.json.get("message")
response = agent.achat(message)
return jsonify({"response": str(response)})
except FederatedConnectionInterrupt as e:
return jsonify({"error": str(e.to_json())}), 403
except Exception as e:
return jsonify({"error": str(e)}), 500
comming soon
Account linking
If you're integrating with Google, but user in your app or agent can also sign in using other methods (e.g., a username and password or another social provider), you'll need to link these identities into a single user account. Auth0 refers to this process as account linking.
Account linking logic and handling will vary depending on your app or agent. You can find an example of how to implement it in a Next.js chatbot app here. If you have questions or are looking for best practices, join our Discord and ask in the #auth0-for-gen-ai channel.